from together import Together
import os
client = Together(
api_key=os.environ.get("TOGETHER_API_KEY"),
)
fine_tune = client.fine_tuning.retrieve(id="ft-id")
print(fine_tune)
{
"id": "3c90c3cc-0d44-4b50-8888-8dd25736052a",
"training_file": "<string>",
"validation_file": "<string>",
"model": "<string>",
"model_output_name": "<string>",
"model_output_path": "<string>",
"trainingfile_numlines": 123,
"trainingfile_size": 123,
"created_at": "<string>",
"updated_at": "<string>",
"n_epochs": 123,
"n_checkpoints": 123,
"n_evals": 123,
"batch_size": 123,
"learning_rate": 123,
"lr_scheduler": {
"lr_scheduler_type": "linear",
"lr_scheduler_args": {
"min_lr_ratio": 0
}
},
"warmup_ratio": 123,
"max_grad_norm": 123,
"weight_decay": 123,
"eval_steps": 123,
"train_on_inputs": true,
"training_method": {
"method": "sft",
"train_on_inputs": true
},
"training_type": {
"type": "Full"
},
"status": "pending",
"job_id": "<string>",
"events": [
{
"object": "fine-tune-event",
"created_at": "<string>",
"level": "info",
"message": "<string>",
"type": "job_pending",
"param_count": 123,
"token_count": 123,
"total_steps": 123,
"wandb_url": "<string>",
"step": 123,
"checkpoint_path": "<string>",
"model_path": "<string>",
"training_offset": 123,
"hash": "<string>"
}
],
"token_count": 123,
"param_count": 123,
"total_price": 123,
"epochs_completed": 123,
"queue_depth": 123,
"wandb_project_name": "<string>",
"wandb_url": "<string>",
"from_checkpoint": "<string>"
}
List the metadata for a single fine-tuning job.
from together import Together
import os
client = Together(
api_key=os.environ.get("TOGETHER_API_KEY"),
)
fine_tune = client.fine_tuning.retrieve(id="ft-id")
print(fine_tune)
{
"id": "3c90c3cc-0d44-4b50-8888-8dd25736052a",
"training_file": "<string>",
"validation_file": "<string>",
"model": "<string>",
"model_output_name": "<string>",
"model_output_path": "<string>",
"trainingfile_numlines": 123,
"trainingfile_size": 123,
"created_at": "<string>",
"updated_at": "<string>",
"n_epochs": 123,
"n_checkpoints": 123,
"n_evals": 123,
"batch_size": 123,
"learning_rate": 123,
"lr_scheduler": {
"lr_scheduler_type": "linear",
"lr_scheduler_args": {
"min_lr_ratio": 0
}
},
"warmup_ratio": 123,
"max_grad_norm": 123,
"weight_decay": 123,
"eval_steps": 123,
"train_on_inputs": true,
"training_method": {
"method": "sft",
"train_on_inputs": true
},
"training_type": {
"type": "Full"
},
"status": "pending",
"job_id": "<string>",
"events": [
{
"object": "fine-tune-event",
"created_at": "<string>",
"level": "info",
"message": "<string>",
"type": "job_pending",
"param_count": 123,
"token_count": 123,
"total_steps": 123,
"wandb_url": "<string>",
"step": 123,
"checkpoint_path": "<string>",
"model_path": "<string>",
"training_offset": 123,
"hash": "<string>"
}
],
"token_count": 123,
"param_count": 123,
"total_price": 123,
"epochs_completed": 123,
"queue_depth": 123,
"wandb_project_name": "<string>",
"wandb_url": "<string>",
"from_checkpoint": "<string>"
}
Bearer authentication header of the form Bearer <token>
, where <token>
is your auth token.
Fine-tune job details retrieved successfully
The response is of type object
.
Was this page helpful?